

SISTEMAS CONSTRUTIVOS

Painéis pré-fabricados arquitetônicos de concreto

Descrição

Sistema construtivo em painéis préfabricados arquitetônicos de concreto armado não estruturais, destinado a fachadas de edifícios, desenvolvido sob medida e com diversos tipos de acabamentos, cores e formas.

Características técnicas

O sistema construtivo Stamp é constituído por painéis de concreto armado, sistemas de fixação e juntas. Suas dimensões são limitadas em razão da capacidade dos equipamentos de produção e montagem, das dimensões máximas permitidas pelos sistemas de transporte e dos espaços para acesso e estoque no local da obra.

A combinação entre a maior quantidade de repetições e as maiores dimensões possíveis otimiza o preço da fachada. Segundo a empresa, os painéis com área superficial superior a 15 m² apresentam condições econômicas favoráveis quando comparados aos outros painéis com áreas menores.

Painéis

Os painéis são componentes de concreto armado sem função estrutural, acabados para cumprir funções arquitetônicas. Sua seção transversal pode ser maciça ou do tipo sanduíche. Painéis maciços apresentam custo de produção menos elevado do que painéis tipo sanduíche.

Os painéis são armados com aço CA-50 e possuem dimensões e formatos variados, com detalhes em alto ou baixo relevo.

O concreto usado na produção dos

painéis apresenta resistência característica à compressão superior a 35 MPa. O uso de aditivos como superplastificantes e retardantes de pega são comumente usados na produção dos painéis. Sua coloração é obtida em razão do uso de pigmentos inorgânicos, dos tipos agregados e da cor do cimento.

Fixações

Os painéis são fixados às estruturas de concreto ou de aço através de insertes metálicos embutidos nos painéis (chapas, tubos, peças especiais de montagem). Tratam-se de sistemas especificamente desenvolvidos para cada obra, levando-se em consideração as especificidades das estruturas e a distribuição dos esforços.

Os dispositivos de fixação devem ter elevada resistência à corrosão, pois,

Figura 1 - Alguns padrões de acabamento

em geral, são de difícil acesso para manutenção. Podem ser empregados dispositivos de aço inoxidável, patinável ou carbono. Nos dois últimos casos é necessária a proteção contra corrosão, por meio de revestimento de zinco (galvanização) ou com pintura de alto desempenho, como epóxi, por exemplo. Os parafusos utilizados nas ligações de fixação devem atender aos requisitos de resistência mecânica e resistência à corrosão. Os parafusos devem ter composição química semelhante ao aço empregado nos insertes metálicos de modo a evitar a corrosão galvânica.

Os sistemas de fixação têm a finalidade de transmitir as cargas atuantes à estrutura, considerando:

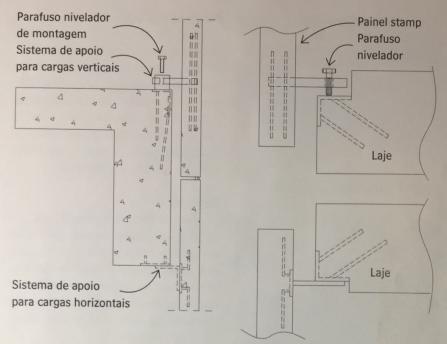
- Sistemas de gravidade: com a função de transmitir esforços verticais, como o peso próprio
- Sistemas de contraventamento: com a função de transmitir esforços horizontais, como os provenientes das cargas de vento e impactos laterais

Geralmente cada painel é pregado por seis fixações, duas de gravidade (carregamento vertical) e quatro de contraventamento (carregamento horizontal).

Juntas

As juntas entre painéis exercem as funções de:

- Acomodar as variações térmicas e higroscópicas do painel
- Acomodar variações entre painéis e estrutura, bem como pequenas deformações e deslocamentos
- Propiciar tolerância de montagem
- Propiciar estanqueidade à água e ao ar As juntas devem ser projetadas de



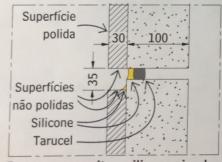

Figura 2 - Fixações de gravidade e contraventamento

Figura 3 - Montagem das fôrmas

Figura 4 - Aplicação de desmoldante

Peça com granito - silicone simples

Dimensões em mm

18

Superfície Silicone polida

Junta falsa - silicone alto

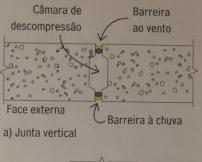

Fonte: Stamp

Figura 5 - Junta simples

modo a garantir a estanqueidade, permitir as deformações sem criar tensões adicionais nos painéis e atender aos requisitos estéticos. As juntas entre os painéis podem ser simples ou duplas.

O material que compõe as juntas é um selante flexível, com propriedades mecânicas que permitem a movimentação das juntas e propriedades físicas que asseguram sua durabilidade. Tem de ser resistente a intempéries, garantir estanqueidade e apresentar resistência ao fogo compatível com o especificado em projeto.

O selante utilizado no sistema deve apresentar:

b) Junta horizontal

Fonte: Diretrizes para produção e instalação de painéis pré-fabricados arquitetônicos para fachadas, Camila Meirelles Fonseca Arantes, Instituto de Pesquisas Tecnológicas de São Paulo, dissertação de mestrado, São Paulo, 2009.

Figura 6 - Junta dupla

- Adesão à superfície do painel
- Capacidade de deformação
- Durabilidade
- Estanqueidade
- Compatibilidade com o concreto (não podem ser empregados, por exemplo, silicones acéticos que podem reagir com os álcalis do cimento)
- Estética

O corpo de apoio é utilizado para limitar a profundidade da junta, permitindo que seu dimensionamento tenha profundidade uniforme e também para possibilitar o adensamento do silicone.

Componentes do sistema

- Concreto
- Cimento
- Agregados
- Pigmentos
- Aditivos
- Água

SISTEMAS CONSTRUTIVOS

- Armadura
- Barras de aço
- Componentes para içamento e manuseio
- Dispositivos de fixação
- Insertes metálicos
- Tratamentos anticorrosivos
- Materiais e componentes de ligação
- Materiais para vedação das juntas
- Selantes
- Corpo de apoio para juntas

Etapas de produção e indicadores de prazo

As etapas de produção são apresentas na tabela 1, considerando:

- Edifício comercial de 20 pavimentos
- Total de 600 painéis;
- 30 painéis por pavimento (média)
- Área de fachada em painéis desenvolvidos: 7.200 m²

Ferramentas e equipamentos para a execução do serviço Produção

- Central de concreto (produção de concreto)
- Vibradores de mangote e de prancha (ar comprimido)
- Ponte rolante ou pórtico rolante
- Cabine de jateamento
- Equipamento de jateamento
- Lavadora de alta pressão (industrial)
- Compressor

Figura 7 – Montagem da armação

Figura 8 - Posicionamento da armação

Instalação (montagem)

- 2 máquinas de solda
- 2 tirfores
- 1 guindaste ou grua
- 1 aparelho de nível com tripé
- 2 alavancas
- 1 furadeira martelete
- 1 prumo de face
- 1 conjunto de maçarico
- 2 torres de andaimes
- 3 rádios comunicadores

Planta de produção

A planta de uma fábrica de painéis da Stamp é apresentada na figura 11.

A área necessária para o armazenamento dos painéis na obra, de acordo com a empresa, é de 10 m x 10 m, o que possibilita o armazenamento de 15 painéis. A área mínima admissível de armazenamento deve ter capacidade para comportar oito painéis.

Segurança

No içamento dos painéis, seja por meio de caminhão munck, guindaste ou grua, a carga máxima suportada pelo equipamento deve ser respeitada, além de serem tomados todos os cuidados necessários para que não haja queda de painéis, nem tombamento de equipamentos.

O uso de EPIs é necessário tanto em fábrica quanto na obra.

Nos trabalhos em alturas superiores a 2 m é necessário o uso do cinturão de segurança tipo pára-quedista.

EPI's necessários para o uso na fábrica:

- Avental de raspa de couro
- Bota de segurança com bico de aço
- Capacete de segurança
- Cinto de segurança com trava-quedas (preso em cabo de aço ou corda de segurança auxiliar)
- Luva de proteção (vinílica, de raspa)

Tabela 1 - CRONOGRAMA

	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez
Projetos apresentação											2 13	
Aprovação												
Ancoragens para a montagem + produção*												
Desenhos de produção												
Fôrmas												
Produção (oito painéis/dia)												
Preparação e topografia												
Montagem (12 painéis/dia)												
Reparos + limpeza												
Rejuntamento												
- 1 0 1/10				-			1	. /	DESCRIPTION OF THE PERSON NAMED IN			

^{*}De acordo com a Stamp, há três tipos de ancoragem: ancoragens da estrutura – chapas metálicas colocadas na estrutura onde o painel será fixado; ancoragens do painel – chapas metálicas colocadas no painel; ancoragens de montagem – chapas metálicas que farão as ligações entre as chapas do painel e da estrutura.

- Óculos de segurança
- Protetor auricular

EPIs necessários para a obra:

- Avental de raspa de couro
- Blusão de raspa de couro para soldas sobre a cabeça
- Bota de segurança com bico de aço
- Capacete de segurança
- Cinto de segurança com trava-quedas (preso em cabo de aço ou corda de segurança auxiliar)
- Luva de proteção (vinílica, de raspa)
- Máscara para solda
- Óculos de segurança
- Perneira de raspa de couro
- Protetor auricular

Controle da qualidade Recebimento dos agregados na fábrica

- Granulometria
- Massa específica
- Material pulverulento
- Densidade
- Teor de torrões de argila
- Cor
- Contaminação

Figura 9 - Concretagem do painel

Produção

Antes da concretagem

- Fôrmas: controle dimensional, estado de conservação, limpeza e aplicação de desmoldante
- Posicionamento: armaduras, componentes de fixação ou ancoragens e cabos para içamento

Durante a concretagem

- Concreto: slump 20 cm, temperatura e volume de ar incorporado
- Lançamento do concreto
- Espalhamento do concreto
- Adensamento do concreto
- Moldagem de corpos de prova para determinação da resistência à com-

Figura 10 - Desenforma do painel

pressão para desenforma e final. A resistência mínima na desenforma após 14 horas é de 14 MPa e aos 28 dias é de 35 MPa

Após concretagem

- Acabamento do painel
- Identificação do painel
- Resistência à compressão do concreto
- Aprovação final

Instalação

- Inspeção dos sistemas de fixação
- Inspeção de solda, com verificações visuais, dimensionais e ensaio de líquido penetrante (verificação de fissuras)≫

Tabela 2 – INDICAÇÕES DE LOCAIS DE CONSTRUÇÃO E UNIDADES CONSTRUÍDAS

Obra	Ano	Construtora	Área da fachada	Local
Edifício Residencial Sapucaia	2002	ACH Engenharia e Construtora Ltda.	7.617 m ²	São Paulo
Edifício Le Palais (Inajaroba)	2004	ACH Engenharia e Construtora Ltda.	9.218 m ²	São Paulo
Edifício Tanquilli	2005	ACH Engenharia e Construtora Ltda.	6.157 m ²	São Paulo
Edifício Potenji	2005	ACH Engenharia e Construtora Ltda.	7.718 m ²	São Paulo
Residência Flávia Soares	2007	ANF	230 m ²	São Paulo
Terminal Sacomã	2006	Consórcio Andrade Gutierrez e Queiróz Galvão	2.074 m ²	São Paulo
CIDP –Petrobrás Rio de Janeiro	2008	Consorcio CITI	15.175 m ²	Rio de Janeiro
Escada de Incêndio do Paço Municipal da Prefeitura de Santo André	2007	Consport	733 m²	Santo André (SP)
SPE – Mansão da Praia	2006	Construtora Adolpho Lindenberg	10.500 m ²	Santos (SP)
Universidade Federal do ABC – bloco A	2007	Construtora Augusto Velloso S/A	11.348 m²	Santo André (SP)
Correios Santo Amaro	2003	Construtora Better	7.772 m ²	São Paulo
Pavilhão de Exposições	2006	Construtora CVP	2827 m ²	São Paulo
Edifício de Bionanomanufatura – IPT	2010	Construtora e Incorporadora Squadro Ltda.	1.730 m ²	São Paulo
Edifício Alameda Santos	2002	Engeform Costruções e Comércio Ltda.	1.600 m ²	São Paulo
Parque da Juventude	2006	Engeform Costruções e Comércio Ltda.	15.160 m ²	São Paulo
Edifício Etec/Fatec Osasco	2009	Engetal	5029,87 m ²	Osasco (SP)
Condomínio Vila Olímpia Corporate Plaza	2004	Exto	6.600 m ²	São Paulo

Tabela 2 – INDICAÇÕES DE LOCAIS DE CON Obra	Ano	Construtora	Área da fachada	Local	
Residência Silvia e Ari Weinfeld	2004	Fairbanks & Pilnik Construções	288 m ²	São Paulo	
Flat Mélia Confort Berrini	2001	Gafisa S/A	4.650 m ²	São Paulo	
Catedral de Santos — Igreja Universal do	2003	Igreja Universal do Reino de Deus	9252 m²	Santos (SP)	
Reino de Deus Colégio Santa Catarina	2001	Incorbase Incorporadora	2.806 m ²	São Paulo	
Caesar Business Paulista	2001	Inpar	11.783 m²	São Paulo	
Continental Square	2002	Inpar	19.371 m ²	São Paulo	
Caesar Business Guarulhos	2000	Inpar Construções	13.200 m ²	Guarulhos (SP)	
Blue Tree Towers Morumbi	2000	Inpar Incorporação	15.000 m ²	São Paulo	
Corporate Plaza	2000	Inpar Incorporação	25.300 m ²	São Paulo	
Forres Empresariais do Ibirapuera II	2000			0° D I	
Lavandisca)	2003	Inpar Incorporações e Participações	13.800 m ²	São Paulo	
Ed. L' Essence Jardins	2004	Inpar Incorporações e Participações	13.400 m ²	São Paulo	
Rede Globo	2006	Inpar Incorporações e Participações	4.880 m ²	São Paulo	
Edifício San Paolo	1998	JHS Construtora	15.000 m ²	São Paulo	
Plaza Iguatemi Business Center (IGW Towers)	2000	JHSJ	20.520 m ²	São Paulo	
Plaza Iguatemi	2001	JHSJ	1.900 m ²	São Paulo	
Floreiras do IGW/Piso	2004	JHSJ	200 m ²	São Paulo	
Shopping Praça da Moça	2008	MATEC	21.700 m ²	Diadema (SP)	
Shopping Jardim Anália Franco	1999	Matec Engenharia e Construções	14.300 m ²	São Paulo	
Hotel Kempinski (+ IP2)	2001/2007	Método Engenharia	9.709 m ²	São Paulo	
Shopping Center Iguatemi	2007	Método Engenharia	445 m ²	São Paulo	
Rochaverá Corporate Towers	2002	Método Engenharia	8.792 m ²	São Paulo	
Hospital Moinhos de Vento – Edif. Garagem	2003	Método Engenharia e BSF Engenharia	4.200 m ²	Porto Alegre	
Condominium Club Ibirapuera (CCI)	1995	Método Engenharia S/A	28.200 m ²	São Paulo	
São Paulo Market Place (fase I)	1995	Método Engenharia S/A	5.400 m ²	São Paulo	
Torre Norte – Cenu	1998	Método Engenharia S/A	20.000 m ²	São Paulo	
	1999	Método Engenharia S/A	5.200 m ²	São Paulo	
Edifício Berrini 500	2001	Método Engenharia S/A	15.000 m ²	São Paulo	
Hotel Grand Hyatt		Método Engenharia S/A	2.466 m ²	São Paulo	
International Plaza	2001				
Brascan Century Plaza	2002	Método Engenharia S/A	25.000 m ²	São Paulo	
Edifício Garagem Office Tamboré	2008	MPD	964 m ²	Barueri (SP)	
Edifício New England	2004	Quota Engenharia	6.121 m ²	São Paulo	
Centro Empresarial Redevco Alphaville	2003	Racional Engenharia Ltda.	17.000 m ²	Barueri (SP)	
CTI Bradesco	2006	Racional Engenharia Ltda.	2.355 m ²	Osasco (SP)	
São Paulo Market Place (fase II)	2000	Schahin Engenharia	11.600 m ²	São Paulo	
Complexo Educacional Abram Szjman – Acadêmico 2	2008	Senac	10.145 m ²	São Paulo	
Complexo Educacional Abram Szjman – Restaurante	2009	Senac	503 m ²	São Paulo	
Mondial Airport	2001	Setin Empreendimentos	13.200 m²	São Paulo	
Castelo Branco Office Park	2008	Tishman	8.217 m ²	Barueri (SP	
Bovespa (Bolsa de Valores do Estado de São Paulo)	2004	Stamp*	275 m ²	São Paulo	

^{*}Execução de retrofit

■ Tolerâncias dos painéis acabados e de montagem (tabela 3 e figuras 14 e 15)

Avaliações técnicas

Os dados referentes às avaliações técnicas podem ser obtidos diretamente com a Stamp.

Manutenção

■ Limpeza

Em empreendimentos localizados em áreas urbanas, as fachadas necessitam de limpeza periódica, dependendo da intensidade da sujeira depositada. Em geral, a cada três a cinco anos há necessidade de limpeza.

Os painéis arquitetônicos Stamp, de acordo com a empresa, necessitam de uma manutenção mínima, ou seja, uma lavagem geral a ser realizada regularmente. Para a lavagem, recomenda-se o uso de produto de limpeza (sabão ou detergente neutro) e água sob pressão, sempre com o bico do jato em leque. A limpeza dos painéis arquitetônicos deve ser executada por empresas especializadas. A limpeza das juntas de silicone também exige cuidados, devendo ser feita através de escovação com escova macia de náilon e com uso de detergente neutro.

Selantes das juntas

A empresa recomenda que seja feita uma vistoria das juntas (flexibilidade, aderência e falhas) no momento de cada lavagem da fachada. Caso seja necessária uma reaplicação de selante em alguns pontos, recomenda-se que seja utilizado o mesmo tipo de produto aplicado anteriormente.

De acordo com a Stamp, a vida útil do selante é de 20 anos e sua substituição é recomendada somente quando houver alguma falha (descolamento, fissura).

■ Execução de aberturas

Caso haja necessidade de se fazer aberturas para embutir caixas de instalações, passagem de tubulação e janelas, entre outros, a empresa recomenda que seja consultada para elaborar, de acordo com o caso, a metodologia mais adequada para a execução do serviço. As mesmas recomendações se aplicam a eventuais fixações de elementos de sustentação de cargas nas paredes.

Ancoragens

A Stamp recomenda que:

- Não sejam estocados produtos corrosivos junto às ancoragens, tais como ácidos, álcalis, sais ou outros que possam atacar de alguma forma materiais ferrosos
- Não sejam permitidos vazamentos de água sobre as ancoragens
- Não seja permitida a soldagem sobre as ancoragens de qualquer elemento estranho

Conforme os procedimentos descritos pelo fabricante no manual do proprietário, a manutenção das ancoragens deve incluir a recuperação dos tratamentos anticorrosivos das fixações quando estas não apresentarem durabilidade equivalente à durabilidade da edificação.

Recomenda-se que seja realizada uma inspeção nos dispositivos de fixação verificando:

- Se estão em conformidade com o projeto
- Qualidade das soldas
- Tratamento anticorrosivo

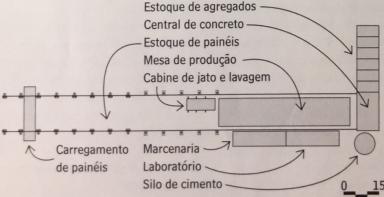


Figura 11 - Planta de uma fábrica de painéis Stamp

Figura 12 - Controle de qualidade

Figura 13 - Montagem do painel

Nota: Em geral, é recomendável a previsão de pontos ou "janelas" de inspeção, feitas internamente, para inspeção das ancoragens. Caso contrário, o acesso é difícil e o usuário não tem como verificar a necessidade de manutenção ao longo do tempo.

Vida útil de projeto e prazos de garantia (NBR 15575-1:2008)

Conforme a NBR 15575-1:2008, a vida útil é uma indicação do tempo de vida ou da durabilidade de um edifício e suas partes. A vida útil de projeto (VUP) é definida na fase de projeto do edifício e de suas partes, como uma aproximação da durabilidade desejada pelo usuário, representando uma expressão de caráter econômico de uma exigência do usuário, contemplando custos iniciais, custos de operação e de manutenção ao longo do tempo.

Tabela 3 - TOLERÂNCIAS DIMENSIONAIS DOS PAINÉIS ACABADOS

	Dimensões		Tolerância			
		até 3 m	± 3 mm			
а	Comprimento ou largura total do painel	de 3 m a 6 m	- 3 mm, + 4,5 mm			
a		de 6 m a 12 m	± 6 mm			
		a cada 3 m adicionais	± 1,5 mm			
b	Espessura do painel		- 3 mm, + 6 mm			
С	Variação do esquadro (difere	ença entre duas diagonais) $c = c_1 - c_2$	\pm 3 mm a cada 1,8 m de diagonal ou \pm 1,2 mm, o que for maior			
d	Dimensões das aberturas		± 6 mm			
е	Locação e dimensão de aber	turas não aparentes	± 1,9 mm			
f	Empenamento		± L/360 mm ou no máximo 2,5 mm			
g	Empenamento diferencial er	itre painéis adjacentes	1,3 mm			
h	Deflexão lateral		± 1,5 mm a cada 30 cm da quina adjacente mais próxima			
i	Locação das aberturas de ca	ixilhos	± 6 mm			
j	Locação das chapas		± 25 mm			
k	Locação dos insertos		± 12 mm			
1	Locação de alças de içament	0	± 75 mm			

TOLERÂNCIAS DE MONTAGEM

	Dimensões		Tolerância
a	Deslocamento em relação	o ao eixo*	± 12 mm
		Painel individual aparente	± 6 mm
	Nível do topo do painel em relação ao nível nominal	Painel individual não aparente	± 12 mm
b		Painel aparente em relação ao painel adjacente	± 6 mm
	ao niver nominar	Painel não aparente em relação ao painel adjacente	± 12 mm
С	Variação de prumo na alt	tura do edifício ou em 30 m de altura, o que for menor*	25 mm
d	Variação de prumo em q	± 6 mm	
e	Desalinhamento de quin	± 6 mm	
f	Espessura das juntas	± 6 mm	
g	Encunhamento ou afunil	amento máximo das juntas	9 mm
h	Encunhamento ou afunil	6 mm	
i	Dente entre as faces de p	painéis adjacentes	± 6 mm

^{*} Para edifícios com altura superior a 30 m as tolerâncias "a" e "c" podem ser aumentadas em 3 mm por pavimento, até o limite de 50 mm Fonte: PCI, 1989.

No Brasil, para os edifícios habitacionais, foi adotado, em caráter informativo, o período de 40 anos como vida útil de projeto mínima (VUP_{mínima}) e o período de 60 anos como vida útil de projeto superior (VUP_{superior}), sendo que a escolha de um ou outro período cabe aos intervenientes no processo de construção. Para que a vida útil de projeto seja atingida é necessário o emprego de produtos com qualidade compatível, a adoção de processos e técnicas que possibilitem a obtenção da VUP, o cumpri-

mento, por parte do usuário e do condomínio, dos programas de manutenção e das condições de uso previstas. Os aspectos fundamentais de uso e manutenção do edifício e de suas partes normalmente são informados no manual de uso, operação e manutenção do edifício, ou em manuais de fabricantes, sendo que a NBR 5674 é uma referência para definição e realização de programas de manutenção nos edifícios.

Associado à VUP está o prazo de garantia, contado a partir da expedi-

ção do "Auto de Conclusão" ou "Habite-se" do edifício.

Considerando-se, portanto, os prazos de vida útil mínimo e superior para o edifício habitacional, de 40 e 60 anos, respectivamente, a NBR 15575-1 traz, em caráter informativo, os prazos de VUP e de garantia para fachadas apontados na tabela 4.

Indicadores de preços e formas de comercialização

Segundo a Stamp, no preço final

Elemento	VUP (anos)		Prazos de garantia (anos)						
construtivo	Mínimo	Superior	Mínimo	Superior	Mínimo	Superior	Minimo	Superior	
Eachadae	chadas ≥ 40	>10	1	1,5	3	4,5	5	7,5	
raciiauas		≥60	Aderência dos selantes		Estanqueidade à água		Segurança e integridade		

Nota: para o nível superior, o prazo de garantia foi acrescido de 50% em relação ao mínimo.

Indicadores ambientais

Classificação do resíduo: conforme resolução Conama (Conselho Nacional do Meio Ambiente) 307 de 05 de julho de 2002, os resíduos podem ser considerados de classe A para concreto e classe B para o aço.

Destinação do resíduo: os itens de classe A são destinados a aterros de resíduos da construção civil ou a usinas de reciclagem como agregados. Os resíduos de classe B devem ser reutilizados, reciclados ou encaminhados a áreas de armazenamento temporário para futuro uso ou reciclagem.

A classe dos selantes utilizados pode ser obtida diretamente com os fabricantes dos produtos.

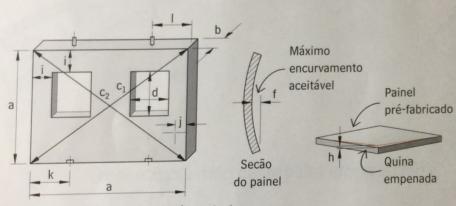
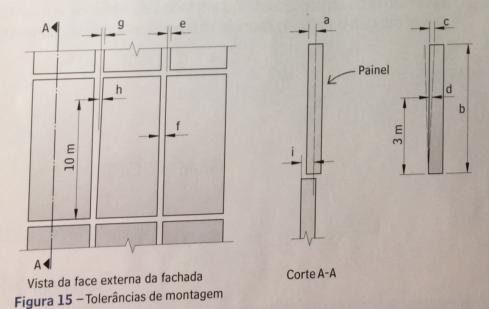



Figura 14 - Tolerâncias dos painéis acabados

Fonte: Diretrizes para produção e instalação de painéis pré-fabricados arquitetônicos para fachadas, Camila Meirelles Fonseca Arantes, Instituto de Pesquisas Tecnológicas de São Paulo, dissertação de mestrado, São Paulo, 2009.

do painel pré-fabricado arquitetônico estão incluídos o fornecimento de materiais, de equipamentos e de mão de obra de fabricação e o fornecimento de equipamentos e mão de obra para instalação.

A venda do painel pré-fabricado arquitetônico pode ser feita por preço global ou por metro quadrado de fachada, sendo o orçamento realizado por meio do projeto fornecido pelo cliente.

Segundo a Stamp, os valores podem variar de acordo com:

- O valor do transporte, em razão da distância entre o empreendimento e a fábrica
- As dimensões dos painéis e eventual necessidade de transporte especiais
- A cor do cimento, sendo que o cimento cinza tem valor inferior ao do cimento branco
- Os tipos de agregados as pedras e as areias têm grande variação em seus valores dependendo de sua cor e do local de extração
- O formato dos painéis os painéis simples (painéis retos) possuem valor inferior aos painéis com relevos, profundidades ou mesmo painéis curvos

De qualquer forma, os valores podem variar de R\$ 220,00/m² a R\$ 350,00/m² de área de painéis (valores para data-base de março/2010).

Fernando Benigno da Silva

EMPRESA

Stamp

Rua João Ferreira de Camargo, 143 — Tamboré — CEP 06460-060

Barueri-SP

Tel.: (11) 4195-6202 - Ramal 110/

Fax: (11) 4191-4763

Home page: www.stamppfa.com.br, e-mail: comercial@stamppfa.com.br